Topic 6F - Autoprotolysis and pH

Very Dilute Solutions of Strong Acids and Bases

If the concentration of a strong acid or base is less than ~10⁻⁶ M, the concentrations of H₃O⁺ and OH resulting from the autoprotolysis of H₂O must be taken into account. For the reactions

$$HA (aq) + H2O (I) = A-(aq) + H3O+(aq)$$
 (Strong)

$$H_2O(I) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$
 (Autoprotolysis)

the aqueous species present are A[¬], H₃O⁺, and OH[¬]. Thus, three equations are needed to determine the three concentrations:

Charge Balance: $[A^*] + [OH^*] = [H_3O^*]$

Material Balance: $[A^{-}] = [HA]_i \rightarrow [HA]_i + [OH^{-}] = [H_3O^{+}]$

Autoprotolysis: $[H_3O^+][OH^-] = K_w = [H_3O^+]([H_3O^+] - [HA]_i)$

Re-arranging the last equation,

$$[H_3O^+]^2 - [HA]_i [H_3O^+] - K_w = 0$$

Thus, as [HA]_i decreases, [H₃O⁺] approaches that resulting from autoprotolysis alone.

1 of 1 12/21/2016 3:31 PM